Integrating genomic data to predict transcription factor binding.
نویسندگان
چکیده
Transcription factor binding sites (TFBS) in gene promoter regions are often predicted by using position specific scoring matrices (PSSMs), which summarize sequence patterns of experimentally determined TF binding sites. Although PSSMs are more reliable than simple consensus string matching in predicting a true binding site, they generally result in high numbers of false positive hits. This study attempts to reduce the number of false positive matches and generate new predictions by integrating various types of genomic data by two methods: a Bayesian allocation procedure, and support vector machine classification. Several methods will be explored to strengthen the prediction of a true TFBS in the Saccharomyces cerevisiae genome: binding site degeneracy, binding site conservation, phylogenetic profiling, TF binding site clustering, gene expression profiles, GO functional annotation, and k-mer counts in promoter regions. Binding site degeneracy (or redundancy) refers to the number of times a particular transcription factor's binding motif is discovered in the upstream region of a gene. Phylogenetic conservation takes into account the number of orthologous upstream regions in other genomes that contain a particular binding site. Phylogenetic profiling refers to the presence or absence of a gene across a large set of genomes. Binding site clusters are statistically significant clusters of TF binding sites detected by the algorithm ClusterBuster. Gene expression takes into account the idea that when the gene expression profiles of a transcription factor and a potential target gene are correlated, then it is more likely that the gene is a genuine target. Also, genes with highly correlated expression profiles are often regulated by the same TF(s). The GO annotation data takes advantage of the idea that common transcription targets often have related function. Finally, the distribution of the counts of all k-mers of length 4, 5, and 6 in gene's promoter region were examined as means to predict TF binding. In each case the data are compared to known true positives taken from ChIP-chip data, Transfac, and the Saccharomyces Genome Database. First, degeneracy, conservation, expression, and binding site clusters were examined independently and in combination via Bayesian allocation. Then, binding sites were predicted with a support vector machine (SVM) using all methods alone and in combination. The SVM works best when all genomic data are combined, but can also identify which methods contribute the most to accurate classification. On average, a support vector machine can classify binding sites with high sensitivity and an accuracy of almost 80%.
منابع مشابه
Integrative analysis of genomic, functional and protein interaction data predicts long-range enhancer-target gene interactions
Multicellular organismal development is controlled by a complex network of transcription factors, promoters and enhancers. Although reliable computational and experimental methods exist for enhancer detection, prediction of their target genes remains a major challenge. On the basis of available literature and ChIP-seq and ChIP-chip data for enhanceosome factor p300 and the transcriptional regul...
متن کاملInferring condition-specific transcription factor function from DNA binding and gene expression data
Numerous genomic and proteomic datasets are permitting the elucidation of transcriptional regulatory networks in the yeast Saccharomyces cerevisiae. However, predicting the condition dependence of regulatory network interactions has been challenging, because most protein-DNA interactions identified in vivo are from assays performed in one or a few cellular states. Here, we present a novel metho...
متن کاملStatistical Applications in Genetics and Molecular Biology
High density tiling arrays are an effective strategy for genome-wide identification of transcription factor binding regions. Sliding window methods that calculate moving averages of log ratios or t-statistics have been useful for the analysis of tiling array data. Here, we present a method that generalizes the moving average approach to evaluate sliding windows of p-values by using combined p-v...
متن کاملMolecular Study of Vascular Endothelial Growth Factor Gene in Iranian Patients after Myocardial Infarction
Background: Stimulation of collateral artery growth (arteriogenesis) and/or capillary network growth (angiogenesis) would be beneficial to the patients with myocardial infarction. To understand the central role of vascular endothelial growth factor (VEGF) in biological angiogenesis, we performed molecular analysis of the VEGF gene in patients afflicted with acute myocardial infarction (AMI). Me...
متن کاملQuantitative models of the mechanisms that control genome-wide patterns of animal transcription factor binding.
Animal transcription factors drive complex spatial and temporal patterns of gene expression during development by binding to a wide array of genomic regions. While the in vivo DNA binding landscape and in vitro DNA binding affinities of many such proteins have been characterized, our understanding of the forces that determine where, when, and the extent to which these transcription factors bind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome informatics. International Conference on Genome Informatics
دوره 16 1 شماره
صفحات -
تاریخ انتشار 2005